
CTF
SOLUTION

September 2019
Author: Paul Ritchie

1. Introduction

Pentest have a history of sharing community challenges at events such as BSides and
have offered several challenges online previously. Our aim is to provide challenges
that simulate discoveries made during real-world engagements and which feel as real as
possible.

1.1 About Avalanche

Avalanche was created for the after party of BSides Edinburgh in April 2019. It was
designed to conclude a CTF event delivered in partnership with Hack the Box EU. HTB do
amazing work and the evening was great fun. Their support throughout was amazing.

We wanted a finale which was a little different, so we replaced the standard “cat /root/
flag.txt” approach with a more realistic goal: steal the database and find sensitive
information. In this case the flag was a phone number which players could call. A nice
visual ending where a phone would light up for the room to see if they were successful.

For the last 45 minutes of BSides Edinburgh teams were able to target Avalanche and go
for victory by knockout.

With fabulous prizes on the line winners would either be:

1) Win by points - The team with the highest points via HTB challenges
2) Win by knockout - The first team to defeat Avalanche and call the phone number.

Despite some valiant efforts from the participants Avalanche remained undefeated that
night and the winners had the highest number of points.

With Avalanche undefeated, and several participants clearly having unfinished business
with it, we took it on a mini-tour where it remained undefeated until the 4th outing.

1.2 Getting started

We assume that you opened the image in Virtual Box and that you have booted
successfully to get a target URL as shown:

Figure 1 - Avalanche Booted in Virtual Box

The URL will be different based on your network configuration. For this writeup we will
be using: http://192.168.56.104

If everything is working well, you will see a login page as below:

Figure 2 - Login Page

Avalanche is a living breathing application which has user registration,
authentication, profile management, about pages, GDPR statements etc. Every link on
the site is fully implemented (in this release “Forgot your password” stops short of
issuing an email, it does have that functionality).

Because of this, Avalanche replicates the real-world which means that it is a
functional site where generally security was not a problem, but one or two things may
have slipped through into deployment. The real-world is often looking for a needle in a
haystack when the application has some maturity like this.

While touring Avalanche it was clear that most participants saw this page and instantly
started throwing ‘ OR 1=1-- into the username field. This approach is probably correct
in CTFs or purposefully vulnerable applications.

When delivering a professional penetration testing you should not simply dive in this
way! Before attacking you should first look at the target from the perspective of a
user. We suggest clicking on all visible links in the page to get a feel for what was
intentionally available. Then register a user account and repeat that process while
authenticated.

As you browse the site make note of potentially vulnerable functionality and then
decide which is probably the highest risk functionality and then start there.

In short: before attempting to attack something first submit the action as
intended and observe how it operates.

Part of releasing this challenge was to try and teach that approach at the live events.
With that point stated this document will now focus on the official solution.

1.3 The solution

You probably came here for the official solution. So here it is:

1) Register a user account.

2) Authenticate as that user.

3) Click on a campaign.

4) Click on “Start Change” under the “Add your own voice” header and create a meme
 as shown:

Figure 3: Add your own voice

5) Once a meme has been created it will appear in the list of memes under a
 campaign. It will now have an “export” option as shown below:

Figure 4 - Export Meme Option

6) Using the “Export” function demonstrates the /export/<id> URL. When the id is
 set appropriately the server will respond with a PDF including the campaign
 information and the meme.

7) An example of the exported PDF is shown below:

Figure 5 - Exported PDF

8) The vulnerability exists in this export routine and the injection point is the
 “username”. The “Generated By” is a pointer to the vulnerability.

9) The application allows a user to alter their username by either: registering a
 new account or updating their profile.

10) To probe the weakness, alter the username to include OS Injection characters such
 as “;” or “`” before exporting a PDF. If the username was set to: cornerpirate;
 then the export process resulted in an error message as shown below:

Figure 6 - Export Error

11) This verbose error message has disclosed several things:
 a. The backend is Linux
 b. The shell is /bin/bash
 c. A path on disk is /code/bringchange/avalanche/app/banners
 d. The command “pandoc” is in use
 e. We are in control of the “author” part of the command

12) For those familiar with command execution the payloads which would work will
 be obvious. However, if you want to know more about how to go from this error to
 a functional exploit reliably see the process in Section 1.4. By following a
 similar process, you can save some time when exploitation is trickier than
 expected.

13) The target has lax egress and ingress filtering so we can use either a reverse
 or bind shell payload. One of the hints provided to people was that the target
 had “python3” installed. In that case the following payload would work to create
 a bind shell on port 4444:

Figure 7 – Usename value to bind to TCP port 4444

14) Set your username as shown above and then access the appropriate export URL.

15) From your PC connect to port 4444 using netcat and then paste the line of python
shown and press enter:

 Figure 8 - Establishing a Shell

16) Great we have an interactive shell with root privileges! While most CTF’s have a
 privilege escalation baked in at this point the original timeframe for BSides
 Edinburgh was too short so there is no escalation here.

17) The goal was to get the “app.db” file so let’s find that and download it as shown
 below:

Figure 9 - Find app.db Start HTTP Listener and Download

18) Using a browser the http://192.168.56.104:8080/app.db URL was downloaded as shown
 in the HTTP server log.
19) At this point you just needed to open “app.db” in an SQLite client and use the
 hints from the CTF blog page to locate agent chaos. Those hints again were:

 o User ID > 1000
 o About Me: includes word “Security”
 o Phone Number: includes “075”

20) With those hints it was easy to find the details of Agent Chaos:

Figure 10 - Finding the Phone Number

21) There we have it. The flag in this case was the phone number for Mr Ronald Hunter!
 While the challenge was active (before Friday 13th of September 2019) it was
 possible to call this number and to hear a voicemail message from Agent Chaos
 which confirmed that you found the flag. It said:

“Agent Chaos here. Congratulations! This is the flag. Please do not share
this number and leave any write-ups until after the closing date”

This message will be removed soon and the SIM will now slowly forget that it ever had
any importance.

1.4 Steps to replicate the target’s Environment

The reasons for doing this are to ensure that the payload would run under ideal
conditions, and that it has no negative impact. When testing a live server, you do not
want to accidentally cause a Denial of Service (DoS).

The target is using /bin/bash so we can use Kali or any other bash terminal to
replicate the right shell environment.

The command used && which means “execute the part on the right when the part to the
left executed without error”. We have no control over the part to the left, so we only
need to concern ourselves with this part:

pandoc 2_40qd1se6.html -o 2_40qd1se6.pdf -M author:cornerpirate;

To replicate the environment, install pandoc and create an html file as shown:

Figure 11 - Replicated Environment

The command creates a PDF version of the HTML file. Looking into the documentation the
“-M author:cornerpirate” sets the author metadata for the PDF file. You can verify that
using the “exif” command as shown:

Figure 12 - author shown in PDF Metadata

Now that we have done this the intended logic of the command is clear and we should
attempt to identify how to inject a new command and prevent errors.

In this case the command is not complicated so simply using “;” to separate commands
would work:

box

Figure 13 - checking injection point works

The highlighted part shows the command structure. To work a value for the author should
be supplied, then the payload command is added after a semi-colon. From the error
message we know that the user controllable part already adds the trailing semi-colon to
finish the command.

Here you have a command prompt you are in control of where you can see all the error
messages and you know that you replace “hostname” above with your intended payload.
Before wasting time editing the username in the application it is safest to build a
payload in this environment first.

